INntro

Why do we study Theory of Computation

Importance of Theory of

Computation
Languages

Languages and Problems

Sequence of mathematical operations ?

What are, and are not, mathematical
operations?

Sequence of well-defined operations
How many operations ?
- The fewer, the better.

Which operations ?
- The simpler, the better.

What is computable,
and what is not ?

Basis of
Algorithm analysis
Complexity theory

What a computer can
and cannot do

Can you make your
program more
efficient?

What iIs easy, and

What is easy, and what is hard for
what is difficult, to computers to do?
compute ? Is your cryptographic

scheme safe?

Analysis of Compilers
algorithms Circuit design
Complexity

Theory

Cryptography

1936 Alan Turing invented the Turing machine,
and proved that there exists an unsolvable
problem.

1940’s Stored-program computers were built.

1943 McCulloch and Pitts invented finite
automata.

1956 Kleene invented regular expressions and
proved the equivalence of regular expression and
finite automata.

1956 Chomsky defined Chomsky hierarchy,
which organized languages recognized by
different automata into hierarchical classes.

1959 Rabin and Scott introduced
nondeterministic finite automata and proved
Its equivalence to (deterministic) finite
automata.

1950’s-1960’s More works on languages,
grammars, and compilers

1965 Hartmantis and Stearns defined
time complexity, and Lewis, Hartmantis
and Stearns defined space complexity.

1971 Cook showed the first NP-complete
problem, the satisfiability problem.

1972 Karp Showed many other NP-
complete problems.

1976 Diffie and Helllman defined Modern
Cryptography based on NP-complete
problems.

1978 Rivest, Shamir and Adelman
proposed a public-key encryption scheme,
RSA.

An alphabet is a finite, non-empty set of
symbols.
{0,1 } is a binary alphabet.
{AB, ...,Z,a,b, ...,z } Is an English
alphabet.

A string over an alphabet X Is a
seguence of any number of symbols
from X.

0,1, 11, 00, and 01101 are strings over {0, 1 }.

Cat, CAT, and compute are strings over the

An empty string, denoted by ¢, Is a
string containing no symbol.

g IS a string over any alphabet.

The length of a string x, denoted by
length(x), Is the number of positions
of symbols in the string.

etz ={a,b, ..., z}

ength(automata) = 8

ength(computation) = 11

ength(e) = O

X(i), denotes the symbol in the it
position of a string x, for 1<1<
length(Xx).

The concatenation of strings x and
y, denoted by x-y or xy, Is a string z
such that:

z(1) = x(1) for 1 <1< length(x)

z(i) = y(i) for
length(x) <i<length(x)+length(y)

Example
automata-computation = automatacomputation

The concatenation of string x for n
times, where nx0, Is denoted by X"

X0 =¢
x1 = x
X2 = X X

X
W
|

— XXX

Let x and y be strings over an alphabet X

The string x is a substring of y if there exist
strings w and z over X such thaty=wXx z.

g IS a substring of every string.
For every string X, x Is a substring of x itself.
Example

g, comput and computation are substrings of
computation.

Let x be a string over an alphabet X

The reversal of the string x, denoted
by X', Is a string such that

If X IS g, then x" IS «.

IfaisinX, yisin X and x = ay, then x"
= y'a.

(automata)’

= (utomata)" a
= (tomata)" ua
= (omata)" tua
= (mata)" otua
= (ata)" motua
= (ta)" amotua
= (a)" tamotua
= (&)" atamotua
= atamotua

The set of strings created from any
number (O or 1 or ...) of symbols In
an alphabet X is denoted by X".

That is, 2= U, _*, 2
Let £ = {0, 1}.

> = {g, 0, 1, , 000, 001, 010,
011, ... }.

The set of strings created from at least

one symbol (1 or 2 or ...) In an alphabet
> IS denoted by >*.

That is, ** = uU_*, X'
— VYi=0.x Zi B 20
— VYV i=0.0 Zi B {8}

Let T = {0, 1}. 3+ = {0, 1, , 000,
001, 010, 011, ... }.

>* and X+ are infinite sets.

A language over an alphabet X Is a
set of strings over .

Let £ = {0, 1} be the alphabet.

L. = {weZ* | the number of I's in o IS
even}.

g, 0,00, 11, 000, 110, 101, 011, 0000, 1100,
1010, 1001, 0110, 0101, 0011, ... are In L,

catenation

Let L be a language over an alphabet X.

The complementation of L, denoted by L, IS
>*—L.

Example:
Let X = {0, 1} be the alphabet.
L. = {oeZ* | the number of 1's in o Is even}.

L,= {oeX* | the number of 1's in o is not
even}.

L,= {oeX* | the number of 1's in o is odd}.

Let L, and L, be languages over an alphabet
DY

The union of L, and L,, denoted by L,UL,,
ISs{x | xisinL,orL,}.
Example:

{xe{0,1}*|x begins with 0} U {xe{0,1}*|x ends
with O}

= {x € {0,1}*] x begins or ends with O}

Let L, and L, be languages over an alphabet
il

The intersection of L, and L,, denoted by
L,nL,, iIs{ x| xisin L, andL,}.

Example:

{ xe{0,1}*| x begins with 0} N {
xe{0,1}*| x ends with O}
= { xe{0,1}*| x begins and ends with
O}

Let L, and L, be languages over an alphabet X.
The concatenation of L, and L,, denoted by
L,-L,, IS {w;w,]| wyis inL; and w,is in L,}.

Example

{ xe {0,1}*]| x begins with O}-{x € {0,1}*] x
ends with O}
= { x € {0,1}*]| x begins and ends with O and
length(x) > 23}
{x € {O0,1}*]| x ends with O}-{x € {0,1}*]| x
begins with O}
= { x € {0,1}*]| x has 00 as a substring}

Let L be a language over an alphabet .

The reversal of L, denoted by L', is {w"| wis In
L}.

Example

{x e {0,1}*| x begins with O} '
= {x € {0,1}*]| x ends with O}

{x € {0,1}*]| x has 00 as a substring} '
= {x € {0,1}*] x has 00 as a substring}

Let L be a language over an alphabet X.
The Kleene’s closure of L, denoted by L*, is {x |

for an integer n> 0 X = X; X, ... X, and X¢, X5, ..., X,
are in L}.
That is, L*= U=, L
Example: Let 2 = {0,1} and
L. = {oeZ* | the number of 1's in o Is even}
L.* = {weX* | the number of 1's in o IS even}
(L)* = {oeX*| the number of 1's in o is odd}*

= {weX*| the number of 1'sin ® > 0}

Let L be a language over an alphabet X.

The closure of L, denoted by L*, Is { x |for
an integer n> 1, X = XX,...X, and Xy, Xy, ...,
X, are in L}

That is, L*= u~_, L

Example:
Let X = {0, 1} be the alphabet.
L. = {oeZ* | the number of 1's in o Is even}

L.* = {weX* | the number of 1's in o IS even}

e Le*

Lt=L"— {e} ?
Example:

L = {weX* | the number of 1'sin o IS
even}

L* = {weX* | the number of 1's in o IS
even} = L.*

Why?
=L L2} 2

Problem

Example: What are prime numbers > 20?

Decision problem
Problem with a YES/NO answer

Example: Given a positive integer n, isn a
prime number > 207?

Language
Example: {n | nis a prime number > 20}
= {23, 29, 31, 37, ..}

A problem is represented by a set of strings of
the input whose answer for the corresponding
problem is “YES”.

a string iIs in a language = the answer of the
corresponding problem for the string is “YES”

Let “Given a positive integer n, is n a prime number >
207?” be the problem P.

If a string represents an integer iin {m | mis a prime
number > 20} , then the answer for the problem P for n
= 11s true.

OoNn MiIscon

Beware

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%ﬁﬁ
- D
S LR Wb LT s

.ﬁﬁﬁﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%ﬁ
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ%ﬁﬁw
i i

e i R e anas oD LT
B | Lk L B D
o i s R Bk R e

o
o
ih
o

ﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%&ﬁﬁﬁﬁ%&ﬁﬁ
ﬁﬁﬁ%ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ%&ﬁﬁﬁﬁ%&ﬁﬁ

,ﬁﬁ%ﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%&ﬁﬁﬁﬁ%&ﬁﬁﬁﬁ
‘ﬁ%ﬁﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁ%&ﬁﬁﬁﬁ%&ﬁﬁﬁﬁ

SB R SRRE S Rs ia
R R e LR

b
% o
W%ﬂﬁﬁﬁ%%ﬂﬁﬁﬁ%%ﬂﬁﬁﬁ%%ﬂﬁ

e LR L SRRk R S R
Sl Ran s LR R SRR LD B S LR
ﬁ%%%ﬁﬁﬁﬁﬁ%&ﬁﬁﬁﬁ%&ﬁﬁﬁﬁ%%ﬁ %ﬁﬁﬁ%%ﬂﬁﬁﬁ%%ﬂﬁﬁﬁ
i T

S
ﬁ%ﬁﬁﬁ

AUATARR EATAI AN loaB~l il AN~ B SIAY BN A Y

N
S
i

Hi o
S | N
SRR i i i
i

=
SRR

E
HaatRERE

o
S
o
-
i

e

kR

gk

ol

e
e

ki

et

e
SR
e

s

s
a2
a2
a2
i

S

D
Shmes i o
SRR
o o
neas
e
Sunie
R
BoRRER

ﬂ
=
o
o
e
=
o
2t

